Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38664220

ABSTRACT

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Asthma , Disease Models, Animal , Isoflavones , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Asthma/pathology , Mice , Ovalbumin/toxicity , Ovalbumin/adverse effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology , Cytokines/metabolism
2.
Physiol Plant ; 176(2): e14286, 2024.
Article in English | MEDLINE | ID: mdl-38618752

ABSTRACT

Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.


Subject(s)
Arabidopsis , Dendrobium , Heterocyclic Compounds, 3-Ring , Lactones , Dendrobium/genetics , Agriculture , Seedlings , Signal Transduction
3.
Zhen Ci Yan Jiu ; 49(3): 274-282, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500324

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on the changes of behavior and hippocampal inflammatory factors in rats with chronic fatigue syndrome (CFS), so as to explore its possible mechanisms in the treatment of CFS. METHODS: Twenty-seven SD rats were randomly divided into control, model and electroacupuncture (EA) groups (n=9 rats in each group). The CFS model was established by multi-factor compound stress stimulation method. Rats of the EA group received EA (10 Hz) at "Shenting" (GV24) penetrating "Baihui" (GV20), "Dazhui" (GV14) for 15 min, twice a day for 14 days. The general conditions, Morris water maze test, open field test, the exhausted running platform were conducted for determining the rats' locomotor and learning-memory activities. H.E. staining was used to observe the morphological structure of neurons in hippocampal CA1 region. The contents of interleukin (IL)-10, IL-17 and transforming growth factor (TGF) ß1 in hippocampus and serum of rats were detected by ELISA, and the positive expressions of IL-10, IL-17 and TGF-ß1 in hippocampal CA1 region were detected by immunofluorescence staining. RESULTS: Compared with the control group, the score of general condition was increased (P<0.05), the escape latency was prolonged (P<0.05), the number of crossing the original platform was decreased (P<0.05), the numbers of crossing the grid and entering the central area were increased (P<0.05), and the exhaustive treadmill time was shortened (P<0.05) in the model group. The contents of IL-10 in the hippocampus and serum were decreased (P<0.05), while IL-17 and TGF-ß1 contents were increased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was decreased (P<0.05), while the intensity of IL-17 and TGF-ß1 were increased (P<0.05). After treatment, compared with the model group, the score of general condition was decreased (P<0.05), the escape latency was shortened (P<0.05), the number of crossing the original platform was increased (P<0.05), the numbers of crossing the grid and entering the central area were decreased (P<0.05), and the exhaustive treadmill time was prolonged (P<0.05) in the EA group. The contents of IL-10 in the hippocampus and serum were increased (P<0.05), while IL-17 and TGF-ß1 levels were decreased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was increased (P<0.05), while the intensity of IL-17 and TGF-ß1 were decreased (P<0.05). H.E. staining showed that in the model group, the number of neurons in the hippocampus decreased, with disordered arrangement and loose structure, and a small numbers of neuronal nuclei were missing. The degree of tissue damage of the EA group was milder than that of the model group. CONCLUSIONS: EA can alleviate fatigue and spatial learning and memory impairment in CFS rats, which may be related to the regulation of peripheral and central inflammation.


Subject(s)
Electroacupuncture , Fatigue Syndrome, Chronic , Rats , Animals , Rats, Sprague-Dawley , Interleukin-10 , Fatigue Syndrome, Chronic/therapy , Interleukin-17/genetics , Transforming Growth Factor beta1/genetics , Hippocampus
4.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474558

ABSTRACT

The Hibiscus manihot L. (HML) Medic, an edible hibiscus of the Malvaceae family, is abundant with flavonoids. The study investigated how Rhizopus-arrhizus-31-assisted pretreatment affects the extraction and bioactivity of flavonoids from HML. The fiber structure of the fermented flavonoid sample (RFF) appears looser, more porous, and more disordered than the unfermented flavonoid sample (RUF). RFF demonstrates milder conditions and yields higher extraction rates. According to the Box-Behnken response surface optimization experiment, the optimal conditions for RFF include a material-liquid ratio of 1:41 g/mL, a 2 h extraction time, a 57% ethanol concentration, and an extraction temperature of 800 °C, resulting in a 3.69% extraction yield, which is 39.25% higher than that of RUF. Additionally, RFF exhibits greater activity than RUF in the radical-scavenging system. The IC50 values for DPPH, OH, and ABTS radicals are 83.43 µg/mL and 82.62 µg/mL, 208.38 µg/mL and 175.99 µg/mL, and 108.59 µg/mL and 75.39 µg/mL for RUF and RFF, respectively. UPLC-QTOF-MS analysis of the active components in the HML flavonoid sample revealed significant differences in the chromatograms of RUF and RFF, indicating that biofermentation led to substantial changes in composition and content from HML.


Subject(s)
Hibiscus , Manihot , Flavonoids/chemistry , Antioxidants/chemistry , Hibiscus/chemistry , Plant Extracts/chemistry , Rhizopus
6.
Psychol Med ; : 1-11, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482853

ABSTRACT

BACKGROUND: Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients. METHODS: We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention. RESULTS: Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group. CONCLUSIONS: These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.

7.
J Am Chem Soc ; 146(7): 4620-4631, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38330912

ABSTRACT

Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvß3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Photoacoustic Techniques , Animals , Mice , Pyrroles/therapeutic use , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Nanoparticles/chemistry , Tomography, X-Ray Computed , Photoacoustic Techniques/methods , Cell Line, Tumor , Phototherapy
8.
Environ Pollut ; 344: 123299, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185355

ABSTRACT

Considering the interference of the complexity of underground environment to the bioremediation scheme, an evaluation model for bioremediation technology in the soil source area of oil contaminated sites was established. On the basis of traditional CDE model, a compartment model was coupled to express the adsorption and degradation process, and the spatial expression of biodegradation was enriched through environment-dependent factors. The visualization of the model was achieved based on COMSOL Multiphysics software platform. Two sets of indoor sandbox experiments on natural attenuation and bioaugmentation were carried out for 120 days to verify the prediction function of the model. The results showed that bioaugmentation greatly improved the remediation effect. Petroleum hydrocarbons with different occurrence states exhibited different spatial distributions under the influence of environmental factors. The prediction accuracy evaluation results of total petroleum hydrocarbons, bio available hydrocarbons and non extractable hydrocarbons showed excellent fitting degree, and the model had a good prediction function for petroleum hydrocarbon in soil under different bioremediation scenarios. This model can be used to screen bioremediation technical schemes, prevent pollution and assess risk of petroleum hydrocarbon contaminated sites.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Petroleum/metabolism , Soil , Soil Pollutants/analysis , Soil Microbiology , Hydrocarbons/metabolism
9.
J Sep Sci ; 47(1): e2300722, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234021

ABSTRACT

Meconopsis integrifolia (Maxim.) Franch. is used extensively in traditional Tibetan medicine for its potent anti-inflammatory properties. In this study, six cyclooxygenase-2 (COX-2) inhibitors were purified from M. integrifolia using high-speed counter-current chromatography guided by ultrafiltration liquid chromatography (ultrafiltration-LC). First, ultrafiltration-LC was performed to profile the COX-2 inhibitors in M. integrifolia. The reflux extraction conditions were further optimized using response surface methodology, and the results showed that the targeted COX-2 inhibitors could be well enriched under the optimized extraction conditions. Then the six target COX-2 inhibitors were separated by high-speed countercurrent chromatography with a solvent system composed of ethyl acetate/n-butanol/water (4:1:4, v/v/v. Finally, the six COX-2 inhibitors, including 21.2 mg of 8-hydroxyluteolin 7-sophoroside, 29.6 mg of 8-hydroxyluteolin 7-[6'''-acetylallosyl-(1→2)-glucoside], 42.5 mg of Sinocrassoside D3, 54.1 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-3''-acetylglucoside, 30.6 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-6''-acetylglucoside and 17.8 mg of Hypolaetin were obtained from 500 mg of sample. Their structures were elucidated by 1 H-NMR spectroscopy. This study reveals that ultrafiltration-LC combined with high-speed counter-current chromatography is a robust and efficient strategy for target-guided isolation and purification of bioactive molecules. It also enhances the scientific understanding of the anti-inflammatory properties of M. integrifolia but also paves the way for its further medicinal applications.


Subject(s)
Countercurrent Distribution , Cyclooxygenase 2 Inhibitors , Papaveraceae , Countercurrent Distribution/methods , Cyclooxygenase 2 Inhibitors/pharmacology , Ultrafiltration/methods , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid
10.
Hereditas ; 161(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167125

ABSTRACT

BACKGROUND: Suanzaoren Decoction (SZRD), a well-known formula from traditional Chinese medicine, has been shown to have reasonable cognitive effects while relaxing and alleviating insomnia. Several studies have demonstrated significant therapeutic effects of SZRD on diabetes and Alzheimer's disease (AD). However, the active ingredients and probable processes of SZRD in treating Alzheimer's with diabetes are unknown. This study aims to preliminarily elucidate the potential mechanisms and potential active ingredients of SZRD in the treatment of Alzheimer's with diabetes. METHODS: The main components and corresponding protein targets of SZRD were searched on the TCMSP database. Differential gene expression analysis for diabetes and Alzheimer's disease was conducted using the Gene Expression Omnibus database, with supplementation from OMIM and genecards databases for differentially expressed genes. The drug-compound-target-disease network was constructed using Cytoscape 3.8.0. Disease and SZRD targets were imported into the STRING database to construct a protein-protein interaction network. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the intersection of genes. Molecular docking and molecular dynamics simulations were conducted on the Hub gene and active compounds. Gene Set Enrichment Analysis was performed to further analyze key genes. RESULTS: Through the Gene Expression Omnibus database, we obtained 1977 diabetes related genes and 622 AD related genes. Among drugs, diabetes and AD, 97 genes were identified. The drug-compound-target-disease network revealed that quercetin, kaempferol, licochalcone a, isorhamnetin, formononetin, and naringenin may be the core components exerting effects. PPI network analysis identified hub genes such as IL6, TNF, IL1B, CXCL8, IL10, CCL2, ICAM1, STAT3, and IL4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that SZRD in the treatment of Alzheimer's with diabetes is mainly involved in biological processes such as response to drug, aging, response to xenobiotic, and enzyme binding; as well as signaling pathways such as Pathways in cancer, Chemical carcinogenesis - receptor activation, and Fluid shear stress and atherosclerosis. Molecular docking results showed that licochalcone a, isorhamnetin, kaempferol, quercetin, and formononetin have high affinity with CXCL8, IL1B, and CCL2. Molecular dynamics simulations also confirmed a strong interaction between CXCL8 and licochalcone a, isorhamnetin, and kaempferol. Gene Set Enrichment Analysis revealed that CXCL8, IL1B, and CCL2 have significant potential in diabetes. CONCLUSION: This study provides, for the first time, insights into the active ingredients and potential molecular mechanisms of SZRD in the treatment of Alzheimer's with diabetes, laying a theoretical foundation for future basic research.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Network Pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Kaempferols , Molecular Docking Simulation , Quercetin , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics
11.
J Hazard Mater ; 466: 133502, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266586

ABSTRACT

Uranium-stressed soil caused by nuclear industry development and energy acquisition have attracted extensive attentions for a long time. This study investigated the effects of biochar application with different pyrolysis temperatures (300 â„ƒ, 500 â„ƒ and 700 â„ƒ) on remediation of uranium-stressed soil. The results showed that higher pyrolysis temperature (700 â„ƒ) was benefit for ryegrass growing and caused a lower uranium accumulation in plants. At the same time, uranium immobilization was more effective at higher biochar pyrolysis temperature. Careful investigations indicated that activities of soil urease and sucrase were promoted, and bacterial diversity was strengthened in C700 group, which may contribute to uranium immobilization. The biochar application could activate metabolic of lipids and amino acids, organic acids and derivatives, and organic oxygen compounds. Nicotinate and nicotinamide metabolism, and Benzoxazinoid biosynthesis were unique metabolic pathways in the C700 group, which could enhance the uranium tolerance from different perspectives. Based on these results, we recommend to use biochar with 700 °C pyrolysis temperature when processing remediation of uranium-stressed soil. This study will facilitate the implementation of biochar screening and provide theoretical helps for remediation of uranium-stressed soil.


Subject(s)
Soil Pollutants , Uranium , Soil/chemistry , Temperature , Pyrolysis , Charcoal/chemistry , Soil Pollutants/chemistry
12.
Scand J Med Sci Sports ; 34(1): e14521, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37815004

ABSTRACT

OBJECTIVE: This longitudinal study aimed to investigate the effects of Qigong on the anxiety state, heart rate variability (HRV), and breathing of anxious college students. METHODS: A total of 37 individuals (18-25 years old) were randomly allocated to the control (n = 19) and intervention (n = 18) groups. Qigong interventions were conducted five times weekly for 12 weeks, with each session lasting 60 min. Hamilton Anxiety Scale, Fatigue Scale 14, Pittsburgh Sleep Quality Index, and 36-item Short Form Survey, HRV, and respiration data were collected before and after the 3-month intervention. RESULTS: Individuals who participated in the three-month Qigong exercise intervention showed a significant reduction in anxiety, particularly mental anxiety (p < 0.05). Subjects in the intervention group presented a decrease in skin temperature (p < 0.05) and an increase in blood volume pulsation (p < 0.05). Meanwhile, HRV exhibited a significant increase in the standard deviation of interbeat interval before and after comparisons (p < 0.05) and between the two groups (p = 0.039) and a reduction in the normalized low-frequency power after the intervention. Moreover, the intervention group experienced increased abdominal breathing depth and abdominal breathing per minute (p < 0.05). CONCLUSION: These findings indicate that Qigong is an effective mind-body exercise strategy for relieving anxiety. HRV and breathing were improved accordingly among college students after the completion of the 3-month Qigong program.


Subject(s)
Qigong , Adolescent , Adult , Humans , Young Adult , Anxiety/prevention & control , Heart Rate/physiology , Longitudinal Studies , Respiration , Students
13.
J Ethnopharmacol ; 319(Pt 3): 117327, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37871755

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Litchi chinensis Sonn. (Litchi) seed, a traditional Chinese medicine, is habitually used in the clinical treatment of prostate cancer (PCa)-induced bone pain. In our previous study, flavonoids have been identified as the active ingredient of litchi seed against PCa. However, its anti-tumor activities in bone and associated molecular mechanisms are still unclear. AIM OF THE STUDY: To investigate the effects and underlying mechanisms of total flavonoids of litchi seed (TFLS) on the growth of PCa in bone. MATERIALS AND METHODS: The effect of TFLS on the growth of PCa in bone was observed using a mouse model constructed with tibial injection of luciferase-expressing RM1-luc cells. Conditioned medium (CM) from bone marrow stromal cells OP9 and CM treated with TFLS (T-CM) was used to investigate the effect on the proliferation, colony formation, and apoptosis of PCa cells (LNCaP, PC3, RM1). An antibody microarray was performed to detect cytokine expression in the supernatant fraction of OP9 cell cultures treated with TFLS or left untreated. Western blot assay was employed to determine the expression and activity of HGFR and its key downstream proteins, Akt, mTOR, NF-κB, and Erk, in PCa cells. The potential target was further verified using immunofluorescence and immunohistochemistry assays. RESULTS: Treatment with TFLS (80 mg/kg, 24 days) significantly suppressed the growth of RM1 cells in bone. CM from bone marrow stromal cells OP9 stimulated the proliferation and colony formation of the PCa cells as well as inhibited the apoptosis of PC3 cells, while T-CM reversed the effects mediated by OP9 cells in vitro. In an antibody array assay, TFLS regulated the majority of cytokines in OP9 cell culture supernatant, among which HGF, HGFR, IGF-1R, and PDGF-AA showed the greatest fold changes. Mechanistically, CM upregulated HGFR and promoted phosphorylation of NF-κB while T-CM induced reduction of HGFR and dephosphorylation of NF-κB in PC3 cells. Moreover, T-CM inhibited NF-κB entry into PC3 cell nuclei. Data from in vivo experiments further confirmed the inhibitory effects of TFLS on NF-κB. CONCLUSION: TFLS suppresses the growth of PCa in bone through regulating bone microenvironment and the underlying mechanism potentially involves attenuation of the HGFR/NF-κB signaling axis.


Subject(s)
Litchi , Prostatic Neoplasms , Male , Humans , NF-kappa B/metabolism , Litchi/chemistry , Litchi/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Signal Transduction , Prostatic Neoplasms/metabolism , Cytokines/pharmacology , Cell Line, Tumor , Tumor Microenvironment
14.
BMC Complement Med Ther ; 23(1): 437, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049800

ABSTRACT

CONTEXT: Inflammation has been identified as a key factor contributing to the development of numerous diseases. Several anti-inflammatory drugs have been developed to treat inflammation-related diseases. However, some of such drugs are associated with varying degrees of side effects. Therefore, it is imperative to develop new anti-inflammatory drugs with reducing side effects for the treatment of inflammation-related diseases. Natural anti-inflammatory drugs have emerged as an important area of research in recent years. The study was to determine the anti-inflammatory mechanism of Paridis rhizoma extract (PRE) in rat models of acute inflammation induced by carrageenan and RAW264.7 cells models induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: PRE was investigated using the carrageenan-induced paw oedema model on rats in vivo. Histopathology examined the extent of inflammatory infiltration and tissue damage. The effect of PRE on the levels of specific cytokines was determined using enzyme-linked immunosorbent assay (ELISA). The Cell Counting Kit (CCK)-8 assay evaluated the cytotoxic effects of PRE on Raw264.7 cells. The mRNA expression levels of cytokines were quantified using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Western blot measured TNF-α, IL6, TLR4, p-P65, p-IKB, HO1, SOD1 and SOD2. Fluorescence measured the cellular levels of reactive oxygen species (ROS). RESULTS: PRE treatment reduced interstitial edema and structural damage in a dose-dependent manner in vivo. PRE inhibited inflammatory responses in vivo and in vitro, as evidenced by the decreased expression of inflammatory factors, production of ROS, and increased expression of SOD1, SOD2, and HO1. Moreover, PRE inhibited the activity of the nuclear factor kappa B (NF-kB) pathway. CONCLUSION: The anti-inflammatory activity and potential mechanism of PRE were demonstrated according to the results. PRE reduced LPS-induced inflammation in RAW264.7 cells by inhibiting the NF-KB signaling pathway and ROS production in vitro. PRE alleviated interstitial edema and structural damage in the carrageenan-induced paw edema model on rats in vivo. This study provided an idea for future development of PR-based anti-inflammatory drugs.


Subject(s)
NF-kappa B , Plant Extracts , Rats , Animals , Carrageenan/adverse effects , Plant Extracts/therapeutic use , NF-kappa B/metabolism , Ethanol/chemistry , Reactive Oxygen Species , Lipopolysaccharides/adverse effects , Superoxide Dismutase-1/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Edema/drug therapy , Edema/chemically induced
15.
Heliyon ; 9(11): e22007, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034607

ABSTRACT

Dendrobium mixture (DM) is a patented Chinese herbal medicine which has been shown to ameliorate type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD) in vivo and in vitro. We aimed to investigate the underlying mechanism of DM as a therapeutic agent in attenuating liver steatosis in relation to type 2 diabetes mellitus (T2DM). DM (16.2 g/kg/d) was administered to db/db mice for 4 weeks. The db/m mice and db/db mice in the control and model groups were given normal saline. Additionally, DM (11.25 g/kg/d) was administered to Sprague-Dawley (SD) rats, and the serum was collected and used in an experiment involving palmitic acid (PA)-induced human liver HepG2 cells with abnormal lipid and glucose metabolism. In db/db mice, the administration of DM significantly alleviated liver steatosis, including histological damage and cell apoptosis. DM was found to prevent the upregulation of the RAGE and AKT1 proteins in liver tissues. The underlying mechanism of DM was further studied in PA-induced HepG2 cells. Post-DM administration serum from SD rats reduced lipid accumulation and regulated glucose metabolism in HepG2 cells. Consequently, it inhibited RAGE/AKT signaling and restored autophagy activity. The upregulated autophagy was associated with the mTOR-AMPK signaling pathway. Furthermore, post-DM administration serum reduced apoptosis of hepatocytes in PA-induced HepG2 cells. Our study supports the potential use of DM as a therapeutic agent for the treatment of NAFLD in T2DM. The mechanism underlying this therapeutic potential is associated with the downregulation of the AGE/RAGE/Akt signaling pathway.

16.
Int J Nanomedicine ; 18: 6503-6525, 2023.
Article in English | MEDLINE | ID: mdl-37965279

ABSTRACT

Carbon dots (CDs), a crucial component of nanomaterials, are zero-dimensional nanomaterials with carbon as the backbone structure and smaller than 10 nm. Due to their beneficial characteristics, they are widely used in biomedical fields such as biosensors, drug delivery, bio-imaging, and interactions with DNA. Interestingly, a novel type of carbon dot, generated by using herbal medicines as synthetic raw materials, has emerged as the most recent incomer in the family of CDs with the extensive growth in the number of materials selected for carbon dots synthesis. Herbal medicine-derived carbon dots (HM-CDs) have been employed in the biomedical industry, and are rapidly emerging as "modern nanomaterials" due to their unique structures and exceptional capabilities. Emerging trends suggest that their specific properties can be used in bleeding disorders, gastrointestinal disorders, inflammation-related diseases, and other common intractable diseases including cancer, menopausal syndrome, central nervous system disorders, and pain of various forms and causes. In addition, HM-CDs have been found to have organ-protective and antioxidant properties, as evidenced by extensive studies. This research provides a more comprehensive understanding of the biomedical applications of HM-CDs for the aforementioned disorders and investigates the intrinsic pharmacological activities and mechanisms of these HM-CDs to further advance their clinical applications.


Subject(s)
Neoplasms , Quantum Dots , Humans , Carbon/chemistry , Quantum Dots/therapeutic use , Quantum Dots/chemistry , Herbal Medicine , Neoplasms/drug therapy , Plant Extracts
17.
Int J Biol Macromol ; 253(Pt 8): 127570, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866556

ABSTRACT

Exacerbated intestinal inflammation, oxidative stress imbalance, and damage to intestinal mucosal barrier are closely related to the pathogenesis and progression of ulcerative colitis (UC). Selenium nanoparticles (Se NPs) have demonstrated promising potential to alleviate UC symptoms, however, their poor solubility and stability leading to aggregation and large precipitates have significantly limit their clinical application. In this study, we aimed to enhance the performance of Se NPs by functionalizing them with Porphyra haitanensis polysaccharide, yielding PHP-Se NPs. As expected, these PHP-Se NPs exhibited reduced particle size (70.51 ± 2.92 nm), enhanced cellular uptake compared to native Se NPs, and preferential accumulation in the colonic tissue, providing targeted UC treatment. In vivo animal experiments revealed that PHP-Se NPs significantly improved weight loss, shortened colon length, and higher disease activity index (DAI) scores in DSS-induced UC mice. Moreover, PHP-Se NPs significantly inhibited the levels of inflammatory factors in colitis tissues and oxidative stress in serum of UC mice, improved histological damage in colitis tissues, and restored the intestinal mucosal barrier. Taken together, our study offers an innovative approach to augment the bioavailability of Se NPs, presenting a promising strategy for the effective prevention and management of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Nanoparticles , Porphyra , Selenium , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Selenium/pharmacology , Colon , Polysaccharides/adverse effects , Disease Models, Animal , Dextran Sulfate/adverse effects , Mice, Inbred C57BL
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 937-940, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37866949

ABSTRACT

Ever since its official launch, Chat Generative Pre-Trained Transformer, or ChatGPT, a natural language processing tool driven by artificial intelligence (AI) technology, has attracted much attention from the education community. ChatGPT can play an important role in the field of medical education, with its potential applications ranging from assisting teachers in designing individualized teaching scenarios to enhancing students' practical ability for solving clinical problems and improving teaching and research efficiency. With the developments in technology, it is inevitable that ChatGPT, or other generative AI models, will be thoroughly integrated in more and more medical contexts, which will further enhance the efficiency and quality of medical services and allow doctors to spend more time interacting with patients and implement personalized health management. Herein, we suggested that proactive reflections be made to figure out the best way to cultivate health professional in the context of New Medical Education, to help more medical professionals enhance their understanding of developments in artificial intelligence, and to make preparations for the challenges that will emerge in the new round of technological revolution. Medical educators should focus on guiding students to make proper use of AI tools in the appropriate context, thereby prevening abuse or overreliance caused by a lack of discrimating ability. Teachers should focus on helping medical students make improvements in clinical reasoning skills, self-directed learning, and clinical practical skills. Teachers should stress the importance for medical students to understand the philosophical implications of the mind-body unity concept, holistic medical thinking, and systematic medical thinking. It is important to enhance medical students' humanistic qualities, cultivate their empathy and communication skills, and continually enhance their ability to meet the requirements of individualized precision diagnosis and treatment so that they will better adapt to the future developments in medicine.


Subject(s)
Artificial Intelligence , Education, Medical , Humans , Educational Status , Students , Clinical Competence
19.
Molecules ; 28(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836677

ABSTRACT

Litsea pungens is a plant with medicinal and edible properties, where the fruits are edible and the leaves have medicinal properties. However, there is limited research on the chemical and pharmacological activities of the plant. In this study, essential oils were extracted by steam distillation and their antioxidant and antibacterial activities were further evaluated. Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical components of L. pungens fresh fruit essential oil (FREO) and L. pungens fresh flower essential oil (FLEO), rapeseed oil (RO) and commercial Litsea oil (CEO). The results showed that 12 chemical components were identified in FREO. Twelve chemical components were identified from FLEO, four chemical components were identified from CEO, and thirteen chemical components were identified from RO. Except for RO, the other three oils were mainly composed of terpenes, among which limonene is the main chemical component. In terms of antioxidant activity, FREO, FLEO, CEO and RO have antioxidant capacity, mainly reflected in the scavenging DPPH free radicals and the iron ion chelating ability, and the antioxidant activity shows a certain dose effect, but the antioxidant activity of FLEO is the weakest among the four oils. Meanwhile, under the stress of hydrogen peroxide, CEO demonstrated a significant antioxidant protective effect on cells. It is worth mentioning that compared with the positive control, the FREO exhibited a better antibacterial rate. When the concentration of essential oil is 20 mg/mL, the bacteriostatic rate can reach 100%. Therefore, it could be a promising candidate among medicinal and edible plants.


Subject(s)
Litsea , Oils, Volatile , Antioxidants/pharmacology , Antioxidants/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Litsea/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Terpenes , Plant Oils/pharmacology , Plant Oils/chemistry
20.
PLoS One ; 18(10): e0292705, 2023.
Article in English | MEDLINE | ID: mdl-37819935

ABSTRACT

The South-to-North Water Diversion East Project (SNWDP-E) is an effective way to realize the optimal allocation of water resources in China. The North Dasha River (NDR) is the reverse recharge section that receives water from the Yufu River to the Wohushan Reservoir transfer project line in the SNWDP. However, the dissolved organic matter (DOM) evolution mechanism of seasonal water transfer projects on tributary waters has not been fully elucidated. In this paper, the NDR is the main object, and the changes in the composition and distribution of spectral characteristics during the winter water transfer period (WT) as well as during the summer non-water transfer period (NWT) are investigated by parallel factor analysis (PARAFAC). The results showed that the water connectivity caused by water transfer reduces the environmental heterogeneity of waters in the basin, as evidenced by the ammonia nitrogen (NH4+-N) and total phosphorus (TP) in the water body were significantly lower (p<0.05, p<0.01) during the water transfer period than the non-water transfer period. In addition, the fluorescence intensity of DOM was significantly lower in the WT than the NWT (p<0.05) and was mainly composed of humic substances generated from endogenous sources with high stability. While the NWT was disturbed by anthropogenic activities leading to significant differences in DOM composition in different functional areas. Based on the redundancy analysis (RDA) and multiple regression analysis, it was found that the evolution of the protein-like components is dominated by chemical oxygen demand (COD) and NH4+-N factors during the WT. While the NWT is mainly dominated by total nitrogen (TN) and TP factors for the evolution of the humic-like components. This study helps to elucidate the impact of water transfer projects on the trunk basin and contribute to the regulation and management of inter-basin water transfer projects.


Subject(s)
Dissolved Organic Matter , Rivers , Humans , Rivers/chemistry , Water/analysis , Humic Substances/analysis , China , Nitrogen/analysis , Phosphorus/analysis , Human Activities , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL